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Abstract. This paper is concerned with a portfolio optimization problem under concave and

piecewise constant transaction cost. We formulate the problem as nonconcave maximization
problem under linear constraints using absolute deviation as a measure of risk and solve it by a
branch and bound algorithm developed in the field of global optimization. Also, we compare it

with a more standard 0–1 integer programming approach. We will show that a branch and
bound method elaborating the special structure of the problem can solve the problem much
faster than the state-of-the integer programming code.
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1. Introduction

The purpose of this paper is to compare the relative advantage of global
optimization approach and integer programming approach in portfolio
optimization under nonconvex transaction cost.
One of the standard formulations of the portfolio optimization problem

is to maximize the net return, i.e., the expected rate of return of the portfo-
lio subtracted by the transaction cost subject to the constraint on the mag-
nitude of risk [2, 11]. When the transaction cost is linear, then the problem
can be solved by standard methods.
Unfortunately, however the transaction cost function is usually noncon-

vex. Transaction cost is usually relatively larger when the amount of transac-
tion is smaller [7, 8] Typical transaction cost functions are piecewise linear
concave and piecewise constant with several jumps. Therefore, the problem
can no longer be solved by standard nonlinear programming methodologies.
One may argue that transaction cost can be ignored since it has been sig-

nificantly reduced during the past decade. In fact, the amount of transac-
tion cost is only a fraction of a decade ago. Nevertheless, it still bothers
investors when the rate of return of a portfolio is small. Also, the cost will
accumulate when one sells and buys assets frequently [9].
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The standard approach for handling a concave or piecewise constant
cost function is to introduce a number of 0–1 variables and solve the
resulting 0–1 integer programming problem by branch and bound or
branch and cut algorithms [13]. Among the renowned softwares for solv-
ing these problems is CPLEX, which can solve a large scale 0–1 linear inte-
ger programming problems when the number of integer variables is not
too large. When, however the number of linear pieces (or number of
jumps) is large, then the problem becomes more difficult since we need to
introduce many integer variables. When the number of linear pieces is 7
and the number of assets is 1000, then we need to handle 7000 0–1 vari-
ables, which is still out of the scope of the state-of-the art integer pro-
gramming software.
An alternative method for handling concave and piecewise constant

functions is a branch and bound method recently developed in the field
of global optimization [3, 15, 17]. It has been successfully applied to
portfolio optimization problems under piecewise linear concave transac-
tion cost [5–9]. The success depends upon the use absolute deviation
instead of the standard deviation as the measure of risk [10, 15, 16],
thereby formulating the problem as a concave minimization under linear
constraints.
Linear formulation also plays a crucial role when using commercial soft-

wares, which has been primarily designed for linear programming problems
including integer variables. If the risk measure is standard deviation, it is
almost impossible to solve the problem containing many integer variables.
In this paper, we will present a rigorous branch and bound algorithm

for solving portfolio optimization problem under piecewise linear and
piecewise constant cost functions. Also, we will develop a number of
schemes to reduce the amount of computation and show that they work
very well for problems under consideration.
In the next section, we will formulate the portfolio optimization problem

under nonconvex transaction cost as a global optimization problem. Sec-
tion 3 will be devoted to a branch and bound algorithm for solving the
problem. Also we will propose schemes to reduce the amount of computa-
tion. In Section 4, we will compare the branch and bound algorithm with
0–1 integer programming approach. It will be shown that the global opti-
mization approach is competitive to CPLEX and that it outperforms CPLEX

when the number of linear pieces is beyond some bound.

2. Problem Formulation

In a series of the articles [5, 9], we discussed a portfolio optimization prob-
lem of the following type
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where:
Rj: random variable representing the rate of return of jth asset
rj: expected value of Rj

M: amount of total investment
uj: constant specifying the upper bound of the amount of investment into

jth asset
xj: variable representing the amount of investment into jth asset
RðxÞ: rate of return of the portfolio x ¼ ðx1;x2; . . . ; xnÞ
W½RðxÞ�: absolute deviation of RðxÞ, i.e., E½jRðxÞ � E½RðxÞ�j�
w: constant specifying the allowable level of the risk
cðxjÞ: transaction cost function associated with purchasing xj

We will assume throughout that the cost function cð�Þ is either one of
the types described in Figure 1.
We will further assume that ðR1;R2; . . . ;RnÞ is distributed over a finite

set of points ðr1t; r2t; . . . ; rntÞ; t ¼ 1; 2; . . . ;T and that

ft ¼ PrfðR1;R2; . . . ;RnÞ ¼ ðr1t; r2t; . . . ; rntÞg; t ¼ 1; 2; . . . ;T;

are known. In the following discussion, we will assume for simplicity that
ft ¼ 1=T for all t, so that

rj ¼
XT

t¼1
rjt=T ð2Þ

piecewise linear concave piecewise constant

(a) (b)

Figure 1. Transaction cost function.
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and hence the problem (1) can be reformulated as a linearly constrained
convex maximization problem with separable objective function (See [1, 7]
for details)
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3. Branch and Bound Algorithm

In this section, we will present a branch and bound algorithm for solving
(4) using linear underestimating functions of the following two types of
nonconvex transaction cost functions [5, 15].
Let cjðxjÞ be a piecewise linear concave function defined in the interval

[a;b]. Then we approximate cjðxjÞ by an affine function �cjðxjÞ connecting
two endpoints as depicted in Figure 2. Note that

�cjðxjÞO cjðxjÞ; xj 2 ½a;b�

Let cjðxjÞ be a piecewise constant function defined in the interval [a; b].
We choose as �cjðxjÞ the convex envelope of cjðxjÞ over [a;b], which can be

Figure 2. Piecewise linear concave function.
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obtained by connecting three endpoints (Figure 3-(a)) or two endpoints
(Figure 3-(b)) when cjð�Þ consists of three linear pieces.
Let us denote

F ¼ fðx;w;/Þj
XT

t¼1
ðwt þ /tÞ=TOwM;

Xn

j¼1
xj ¼M

wt � /t ¼
Xn
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where �c k
j ðxjÞ is a convex underestimator of cjðxjÞ in the interval ½akj ;bk

j �.
Let ðxk;wk;/kÞ be an optimal solution of ð �PkÞ and let

gk ¼
Xn

j¼1
rjxj �

Xn

j¼1
�c k
j ðxkj Þ ð8Þ

fk ¼
Xn

j¼1
rjxj �

Xn

j¼1
cjðxkj Þ ð9Þ

For details of branch and bound algorithm such as x-subdivision strat-
egy, breadth first branching and its convergence properties, the readers are
referred to either [6, 7, 8] or [17].

(a) (b)

a b a b

Figure 3. Convex envelope. Piecewise constant function.
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Algorithm BB (Branch and Bound Algorithm)

0� P ¼ fP0g; f̂ ¼ �1; k ¼ 0; e > 0.
1� If P ¼ / then go to 8�;Otherwise go to 2�.
2� Choose one subproblem Pl where gl ¼ maxfgtjPt 2 Pg: P ¼ P n fPlg.
3� If jgl � flj > e then go to 6�. Otherwise go to 4�.
4� If fl < f̂ then go to 5�. Otherwise f̂ ¼ fl and eliminate all the subprob-

lems Pt for which gt O f̂þ e and go to 1�.
5� If gl O f̂þ e then go to 1�. Otherwise go to 6�.
6� Choose csðxlsÞ � �c l

sðxlsÞ ¼ maxfjcjðxljÞ � �c l
jðxljÞjj j ¼ 1; 2; . . . ; ng:

7� We generate two subproblems.

PTþ1 ¼ Pl \ fxjals Oxs Oxlsg

PTþ2 ¼ Pl \ fxjxls Oxs Obl
sg:

Solve ð �PTþ1Þ; ð �PTþ2Þ. If both ð �PTþ1Þ; ð �PTþ2Þ are infeasible then go to
1�. If ð �PTþ1Þ; ð �PTþ2Þ are feasible, let

fTþ1 ¼
X

rjx
Tþ1
j �

X
cðxTþ1j Þ

gTþ1 ¼
X

rjx
Tþ1
j �

X
�c Tþ1
j ðxTþ1j Þ

fTþ2 ¼
X

rjx
Tþ2
j �

X
cðxTþ2j Þ

gTþ2 ¼
X

rjx
Tþ2
j �

X
�c Tþ2
j ðxTþ2j Þ:

P ¼ P [ fPTþ1;PTþ2g; k ¼ kþ 1, and go to 1�.
8� stop.

THEOREM 1. The Algorithm BB generates an e-optimal solution in finitely
many steps.

Proof. See [5, 17].
Though convergent, the branch and bound algorithm may require exces-

sive amount of computation time when n is large. To reduce the amount
of computation, we employ two heuristics.

Heuristic Scheme 1. Problem Reduction

Let x0 be an optimal solution at the first iteration of the branch and
bound algorithm and let x0j ¼ 0; j 2 J0 and x0j > 0; j 2 Jþ. Then we elimi-
nate all variables xj’s, j 2 J0 from the set of variables in the succeeding
step.
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The reasons behind this heuristic are
(i) The weight of assets j such that x0j ¼ 0 are not likely to have a large

value in an optimal solution.
(ii) It is not profitable to purchase smaller amount of xj since transaction

cost per unit is relatively larger for smaller xj.

Hence most xj’s j 2 J0 are expected to be zero in an optimal solution.

Heuristic Scheme 2. Skipping the Iteration Before Convergence

Let (~xt; ~wt; ~/t) be an optimal solution of (Pt). Let ( �Pt) be the relaxation
of (Pt) by replacing the cost function by its convex underestimator. If the
optimal solution (xt;wt;/t) of ( �Pt) satisfies the condition

cðxtjÞ � �c t
jðxtjÞ < e; 8j

then we are done. However, even when this condition is not satisfied, we
would know after certain iterations that ~xtj would not lie on certain linear
pieces. For example, if xtj lies on the third linear piece (See Figure 4) for
large enough t, then ~xtj is not likely to lie on the first linear piece. More-
over, one may guess that ~xtj lies on the third linear piece. If we know the
piece on which ~xj’s lies, then we can obtain it by solving an associated lin-
ear programming problem.
This leads us to fathom the subproblem (Pt) by solving the associated

linear program when cjðxtjÞ � �c t
jðxtjÞ become reasonably small.

4. Computational Experiments

We conducted numerical simulation using historical data collected for 900
stocks in the Tokyo Stock Exchange.
The branch and bound algorithm was coded in C++ using a PentiumIV

512Mbyte 2.8GHz personal computer. We used NUOPT V of Mathematical
Systems, Inc. for solving linear programming subproblems. Also, we solved
the same problems on the same computer by using CPLEX Version 7.1, where a

Figure 4. Iteration skipping.
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piecewise linear concave function and a piecewise constant function are
represented as a linear function by introduction 0–1 integer variables [13].
Table 1-(a) shows the piecewise linear concave cost function of a leading

security company of Japan. Table 1-(b) shows the piecewise constant cost
table associated with a typical internet transaction.
Table 2 shows the computational result for BB algorithm and CPLEX

when M ¼ 100 million yen and uj = 0.02 for all j. The maximal investable
amount of money to each individual asset is 2 million yen, so that it suf-
fices to consider piecewise constant cost function with only one linear
piece. We see from Table 2 that CPLEX can solve the problem with less than
10 sec, even when n is 900. The BB algorithm with problem reduction strat-
egy (Heuristic 1), on the other hand, requires 3-to 13-times more computa-

Table 1. Transaction cost

Amount of transaction (104 yen) Cost (104 yen)

(a) Piecewise linear concave cost

0–50 1.40%

50–70 1.10% + 0.15

70–100 0.90% + 0.29

100–300 0.85% + 0.34

300–500 0.80% + 0.49

500–1000 0.68% + 1.09

1000–3000 0.55% + 2.39

(b) Piecewise constant cost

0–300 0.2

300–600 0.4

600–900 0.6

900–1200 0.8

1200–1500 1.0

1500–1800 1.2

1800–2100 1.4

Table 2. Computational result (w = 0.035, piecewise constant cost)

n CPLEX BB Objective function

CPU(sec) # of subproblem CPU(sec) # of subproblem (CPLEX-BB)/

BB(%)

100 1 1 8 81 1.075

200 1 20 3 21 0.079

300 1 30 3 15 0.092

400 2 19 15 112 0.147

500 3 1 11 80 0.185

600 4 100 13 69 0.141

700 5 39 9 48 0.027

800 5 100 42 253 0.034

900 9 200 117 577 0.098
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tion time. Also, CPLEX generates a better solution (in term of the value of
the optimal net return) than BB algorithm.
Let us note, however that NUOPT solved each linear subproblem from

scratch (using two phase simplex method), while CPLEX is supposed to use a
more efficient dual simplex procedure based upon the information about the
optimal basis of the master problem [1]. The computation time of BB algo-
rithm should be significantly smaller if we use the dual simplex procedure.
Table 3 shows the computational result when M ¼ 100 million and

uj ¼ 0:05 for all j. The maximal amount of the fund to be invested into
each asset is 5 million yen, so that we need to handle piecewise constant
functions with 2 constant pieces.
We see from this that BB algorithm can solve problems faster. Also it is

more stable. This is due to the fact that many variables are eliminated by
problem reduction strategy since upper bound uj is larger.
Tables 4 and 5 show the computational results of piecewise linear con-

cave function with 7 and 6 linear pieces. We see from this that BB algo-
rithm outperforms CPLEX. Let us note that BB algorithm sometimes

Table 3. Computational results (w = 0.035, piecewise constant cost)

n CPLEX BB Objective function

CPU (sec) # of subproblem CPU (sec) # of subproblem (CPLEX-BB)/BB(%)

100 1 7 3 46 0.195

200 1 100 8 107 0.125

300 1 48 8 109 0.183

400 5 145 4 38 0.075

500 5 100 11 63 0.053

600 5 40 4 18 0.002

700 6 84 12 71 0.065

800 8 50 7 22 0.064

900 8 20 33 152 0.062

Table 4. CPLEX versus BB (w = 0.035, uj = 0.05, piesewise linear with 7 linear pieces)

n CPLEX BB Objective function

CPU (sec) # of subproblem CPU (sec) # of subproblem (CPLEX-BB)/BB(%)

100 2 10 1 25 0.726

200 32 2200 13 249 0.000

300 76 3400 72 1364 0.002

400 37 600 31 443 0.000

500 142 3000 102 972 0.030

600 194 3300 102 971 0.000

700 214 4000 121 1170 )0.001
800 397 6600 100 581 )0.003
900 279 3400 166 801 0.000
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generates a better solution than CPLEX in terms of the value of the objective
function (See underlines in Table 4 and 5). When we employ dual simplex
procedure, the difference should be more significant.
Next, we will show the remarkable effect of Heuristic 2 explained in Sec-

tion 3. Table 6 shows the results for piecewise linear concave case with
seven linear pieces when M ¼ 300 million and uj ¼ 0:05. Optimal solutions
of BB algorithm for e ¼ 10�4 and e ¼ 10�3 are exactly the same as those of

Table 5. CPLEX versus (w = 0.035, uj = 0.02, piecewise linear with 6 linear pieces)

n CPLEX BB Objective function

CPU (sec) # of subproblem CPU (sec) # of subproblem (CPLEX-BB)/

BB(%) 16

100 9 239 3 26 0.000

200 19 1200 9 27 0.016

300 537 32400 10 100 0.012

400 296 12200 34 347 )0.003
500 462 12100 56 548 0.058

600 414 9699 83 535 )0.001
700 2559 57500 103 842 0.020

800 5669 144500 417 2704 0.000

900 1760 38900 92 572 )0.002

Table 6. CPLEX versus BB, with Heuristic 2

BB (e ¼ 10�4) BB (e ¼ 10�3) BB (e ¼ 10�2) CPLEX

Net return(%) 1.087 1.087 1.084 1.087

Risk(%) 3.5 3.5 3.5 3.5

Cost (million) 2.159 2.159 2.169 2.159

CPU time(sec) 87 7 1 34

# of assets 23 22 24 22

Table 7. Effect of Heuristic 2 (Piecewise constant cost)

n BB (e ¼ 10�3) BB (e ¼ 10�2) CPLEX

CPU (sec) Net return (%) CPU (sec) Net return (%) CPU (sec) Net return (%)

100 7 0.341 5 0.341 1 0.344

200 2 1.107 1 1.108 1 1.109

300 2 1.595 2 1.603 1 1.605

400 2 1.790 1 1.786 2 1.790

500 6 7.864 2 1.862 3 1.868

600 6 2.129 2 2.133 4 2.139

700 4 2.275 2 2.279 5 2.284

800 22 2.330 4 2.323 5 2.332

900 34 2.381 4 2.373 9 2.384

216 H. KONNO AND R. YAMAMOTO



CPLEX. Also, the computation time of BB algorithm for e ¼ 10�3 is signifi-
cantly smaller.
Table 7 shows the result for piecewise constant cost function with two

linear pieces. We see that BB(e ¼ 10�2) is competitive to CPLEX.
Table 8 shows the result for piecewise linear transaction cost with seven

linear pieces when M ¼ 300; uj ¼ 0:05. Optimal solutions of BB (e ¼ 10�3)
are almost the same as those of CPLEX. Also, computation time of BB algo-
rithm is much less than that of CPLEX. This shows that BB algorithm with
Heuristic 1 and 2 is superior to CPLEX, particularly when the number of lin-
ear pieces is large.

5. Conclusions

We showed in this paper that a portfolio optimization problem under
piecewise linear concave and piecewise constant cost functions can be
solved in an efficient manner by a branch and bound algorithm.
We compared the performance of this algorithm with an alternative 0–1

integer programming approach and showed that branch and bound algo-
rithm outperforms the state-of-the art integer programming code when the
number of linear pieces is larger and hence 0–1 integer programming for-
mulation requires a large number of 0–1 variables.
Let us note that this conclusion is valid only for the specific portfolio

optimization problem treated in this paper, i.e., a problem with smaller
number of linear constraints in addition to the lower and upper bound
constraint on each variable. The reason is that heuristic procedures pre-
sented in Section 3, constraint are extremely powerful for this class of
problems.
Many (heuristic) algorithms for portfolio optimization under nonconvex

transaction costs have been proposed in the past. Most of these studies fol-
lowed the standard mean–variance framework. However, these algorithms

Table 8. Effect of Heuristic 2 (Piecewise linear cost)

n BB (e ¼ 10�3) BB (e ¼ 10�2) CPLEX

CPU (sec) net return (%) CPU (sec) net return (%) CPU (sec) net return (%)

100 1 0.376 0 0.376 2 0.379

200 7 1.087 1 1.084 32 1.087

300 26 1.717 1 1.715 76 1.717

400 6 1.894 1 1.889 37 1.894

500 26 1.981 1 1.981 142 1.982

600 15 2.264 2 2.264 194 2.264

700 26 2.354 2 2.348 212 2.354

800 26 2.358 2 2.355 397 2.358

900 37 2.376 3 2.371 279 2.376
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need not generate a satisfactory result for quadratically constrained non-
concave maximization (or minimization of a convex quadratic function
subject to nonconvex constraints). These problems can be solved in an effi-
cient manner only when we formulate it within the linear framework, i.e.,
only when we use linear risk measure such as (lower-semi)-absolute devia-
tion or conditional value at risk.
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